费马大定理证明过程,费马大定理是被谁在什么时候如何证明的( 二 )


费马大定理证明过程,费马大定理是被谁在什么时候如何证明的


4 , 高中生为什莫看不懂费马大定理的证明过程若用不定方程来表示,费马大定理即:当n > 2时,不定方程xn + y n = z n 没有xyz≠0的整数解 。为了证明这个结果,只需证明方程x4 + y 4 = z 4 ,(x , y) = 1和方程xp + yp = zp ,(x , y) = (x , z) = (y , z) = 1〔p是一个奇素数〕均无xyz≠0的整数解 。n = 4的情形已由莱布尼茨和欧拉解决 。费马本人证明了p = 3的情,但证明不完全 。勒让德〔1823〕和狄利克雷〔1825〕证明了p = 5的情形 。1839年,拉梅证明了p = 7的情形 。1847年,德国数学家库默尔对费马猜想作出了突破性的工作 。他创立了理想数论,这使得他证明了当p < 100时,除了p = 37,59,67这三个数以外,费马猜想都成立 。后来他又进行深入研究,证明了对于上述三个数费马猜想也成立 。在近代数学家中,范迪维尔对费马猜想作出重要贡献 。他从本世纪20年代开始研究费马猜想,首先发现并改正了库默尔证明中的缺陷 。在以后的30余年内,他进行了大量的工作,得到了使费马猜想成立一些充分条件 。他和另外两位数学家共同证明了当p < 4002时费马猜想成立 。现代数学家还利用大型电子计算器来探索费马猜想,使p 的数目有很大的推进 。到1977年为止,瓦格斯塔夫证明了p < 125000时,费马猜想成立 。《中国数学会通讯》1987年第2期据国外消息报导,费马猜想近年来取得了惊人的研究成果:格朗维尔和希思—布龙证明了「对几乎所有的指数,费马大定理成立」 。即若命N(x)表示在不超过x的整数中使费马猜想不成立的指数个数,则 证明中用到了法尔廷斯〔Faltings〕的结果 。另外一个重要结果是:费马猜想若有反例,即存在x > 0,y > 0,z > 0,n > 2,使xn + y n = z n ,则x > 101,800,000 。

推荐阅读