1,考试说明与考试大纲有什么不同 考试大纲是对考试的内容作规范,考什么或不考什么,考试说明是对考试的程序、方法及注意事项作说明【考试大纲,考试说明与考试大纲有什么不同】
2,考试大纲是什么东西考试大纲是获得执业资格的人员在专业知识方面的基本要求 。考试大纲是考试命题的指导性文件,是考生复习备考的依据 。所谓指导性,是指考试命题的范围不应超出考试大纲的范围 。所谓依据,是指考生要紧扣大纲的要求进行备考
3,考试大纲是什么意思考试大纲是把考试范围具体到每一个基础知识点 。一般在考试前几个月会确定并发布给考生 。命题组必须严格按照考纲出题,否则算超出范围 。考纲对指导学生学习,尤其是应试有指导性作用 。考试大纲在各种正规大型考试均会出现,如中考、高考、考研、国考等 。在考试前几个月发布给考生,规划考试范围和知识考点 。作为考生学习及复习的标准范围 。每年各省市发布的考纲的时间都是不一样的 。考试大纲是把考试范围具体到每一个基础知识点 。一般在考试前几个月会确定并发布给考生 。命题组必须严格按照考纲出题,否则算超出范围 。考纲对指导学生学习,尤其是应试有指导性作用 。考试大纲在各种正规大型考试均会出现,如中考、高考、考研、国考等 。在考试前几个月发布给考生,规划考试范围和知识考点 。作为考生学习及复习的标准范围 。每年各省市发布的考纲的时间都是不一样的 。
4,2009年司法考试大纲什么时候下来 一般司法考试的大纲在4月-5月间下来,6月间网上报名,7月现场报名 。想参加2009年的司法考试,强力推荐司法部的辅导用书(行内人称三大本,很权威的),抓紧时间把三大本细过三遍,把法条过2遍,重视历年真题的复习(能过3遍最好),考前一个月,每天安排做3-5道论述题,为四卷打好基础,过关应该没问题啦!5,考试大纲是什么意思考试大纲是把考试范围具体到每一个基础知识点 。一般在考试前几个月会确定并发布给考生 。命题组必须严格按照考纲出题,否则算超出范围 。考纲对指导学生学习,尤其是应试有指导性作用 。考试大纲在各种正规大型考试均会出现,如中考、高考、考研、国考等 。在考试前几个月发布给考生,规划考试范围和知识考点 。作为考生学习及复习的标准范围 。每年各省市发布的考纲的时间都是不一样的 。6,什么是考试大纲考试大纲有什么作用吗您好,华图教育为您服务 。公务员考试大纲是划分的考试内容范围、提纲,为考公务员的考生起到参考辅导的作用,更多公务员考试内容,请关注甘肃人事考试网如有疑问,欢迎向华图教育企业知道提问 。考试大纲是关于考试科目、题型设置及知识点要求的指导性文件,目的是为便于报考者了解、准备和参加考试录用公务员的公共科目笔试 。主要包括以下一些内容:(1)公共科目笔试内容;(2)作答要求;(3)行政职业能力测验的测试内容和题型介绍;(4)申论考试的测试内容和介绍 。考试大纲是考生复习备考的最权威依据,考生应当依照考试大纲的具体要求安排复习计划,有针对性的备考 。7,考研大纲在哪里看考研大纲分公共课考试大纲和专业课考试大纲 。这两类大纲都由教育部统一发布,高等教育出版社出版,可以在各大正规书店或网上进行购买 。考研大纲既是当年全国硕士研究生入学考试命题的唯一依据,也是考生复习备考必不可少的工具书 。考研大纲是由教育部考试中心组织编写,是规定当年研究生入学考试相应科目的考试范围、考试要求、考试形式、试卷结构等权威政策的指导性用书 。每年的考研大纲是同学们复习过程中必不可少的参考之一 。由教育部统一公布的一般为考研统考专业课大纲,时间一般在9月,与公共课考试大纲的公布时间一致;由各大招生院校公布的,时间一般集中于6月至9月,具体依据各高校而定;还有部分高校每年并不向考生公开公布专业课考试大纲 。根据高等教育出版社消息,2021全国硕士研究生招生考试大纲在9月9日正式发布上市,9月10日大纲内容公布!考研大纲是指由教育部考试中心组织编写,高等教育出版社出版的,规定当年全国硕士研究生入学考试相应科目的考试范围、考试要求、考试形式、试卷结构等政策指导性考研用书 。8,军队文职考试科目有哪些军队文职考试科目分为公共科目和专业科目,其中管理岗位和专业技术岗位共用公共科目考试大纲;专业科目考试大纲区分管理岗位和专业技术岗位两类,按各专业领域和学科门类设置 。专业科目考试大纲分为哲学、经济学、法学、教育学、文学、外国语言文学、历史学、理工学、农学、医学、图书档案学、艺术学、管理学等13类44个专业 。报考人员可登录军队人才网浏览下载考试大纲 。对专业科目考试大纲没有覆盖的小语种和少数民族语言专业岗位,专业科目笔试按照相应语种语言本科教育教学大纲命题 。公共科目在公共科目当中包含了基础知识和岗位能力两个部分 。1、基础知识基础知识部分,总计40分 。其中,单选50道,0.5分/道,共25分;多选10道,1.5分/道,共15分 。非法律部分(49道:8道多选41道单选)法律部分(11道:2道多选9道单选)基础知识属于综合性考试,考试大纲要求的内容涵盖了政治、经济、科技、人文历史、道德、哲学、时事政治、法律等诸多方面,范围广泛,内容庞杂 。2、岗位能力岗位能力部分,主要考查文职人员岗位要求密切相关的基本素质和能力要素,包括言语理解与表达、数量关系、判断推理、资料分析等 。共50道题目,总计60分 。专业科目专业科目考试大纲分为哲学、经济学、法学、教育学、文学、外国语言文学、历史学、理工学、农学、医学、图书档案学、艺术学、管理学等13类44个专业 。对专业科目考试大纲没有覆盖的小语种和少数民族语言专业岗位,专业科目笔试按照相应语种语言本科教育教学大纲命题 。9,教师资格证考试内容与科目是什么幼儿园笔试科目是《综合素质》和《保教知识与能力》,面试内容是教育教学实践能力,小学笔试科目是《综合素质》和《教育知识与能力》,面试内容是学科知识与教学能力和教育教学实践能力,中学考试科目是《综合素质》和《教育知识与能力》《学科知识与教学能力》,面试内容是学科知识与教学能力和教育教学实践能力 。教师资格,是国家对专门从事教育教学工作人员的基本要求,是公民获得教师职位、从事教师工作的前提条件 。教师资格制度是国家实行的教师职业许可制度 。《中华人民共和国教育法》和《中华人民共和国教师法》明确规定,凡在各级各类学校和其他教育机构中从事教育教学工作的教师,必须具备相应教师资格,没有相应教师资格的人员不能聘为教师 。教师资格法定凭证为《教师资格认定申请表》和教师资格证书,在全国范围内适用 。教育部考试中心根据中小学和幼儿园教师资格考试标准,制定各科考试大纲 。中小学和幼儿园教师资格考试大纲规定了考试内容和要求、试卷结构、题型示例等,是考生学习和考试命题的依据 。幼儿园教师资格考试大纲(2科):《综合素质考试大纲》、《保教知识与能力考试大纲》,面试内容是教育教学实践能力;小学教师资格考试大纲(2科):《综合素质考试大纲》、《教育教学知识与能力考试大纲》,面试内容是学科知识与教学能力和教育教学实践能力;初级中学教师资格考试大纲(3科)《综合素质》和《教育知识与能力》《学科知识与教学能力》,面试内容是学科知识与教学能力和教育教学实践能力 。教师资格考试分为笔试和面试两部分 。笔试采用计算机考试和纸笔考试两种方式 。2012年试点,幼儿园、小学教师资格考试笔试所有科目采用计算机考试,其它类别所有采用纸笔考试 。计算机考试考生在计算机上作答,纸笔考试考生在答题卡上作答 。笔试各科考试成绩合格,才能参加面试 。面试采用结构化面试、情景模拟等方式进行,考生通过抽题、备课、试讲、答辩等环节,完成面试 。教师资格证考试改革时间从2015年考试正式实施 。改革后将实行国考,考试内容增加、难度加大 。在校专科大二、大三,本科大三、大四才能报考 。改革后将不再分师范生和非师范生的区别,想要做教师都必须参加国考,方可申请教师资格证 。10,2017年考研数学一考试大纲哪些不考 2017年硕士研究生考试数学一科目的试题都是按照教育部公布的考试大纲命题的,试题内容不会超出考试大纲范围 。由于考试试卷容量有限,不可能考试大纲涉及到的内容全部都考到,肯定会有一些内容不考,但2017年不考,不代表2018年也不考 。考生复习时仍然要全部复习到,不能存在侥幸心理 。2011年硕士研究生入学统一考试数学考试大纲--数学一考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分高 等 数 学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(lhospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(rolle)定理、拉格朗日(lagrange)中值定理和泰勒(taylor)定理,了解并会用柯西(cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数 。当 时,的图形是凹的;当 时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(newton-leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念 向量的线性运算 向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 柱面 旋转曲面 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上多元连续函数的性质 多元函数的偏导数和全微分 全微分存在的必要条件和充分条件 多元复合函数、隐函数的求导法 二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(green)公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算 两类曲面积分的关系 高斯(gauss)公式 斯托克斯(stokes)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容 常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与 级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(fourier)系数与傅里叶级数 狄利克雷(dirichlet)定理 函数在 上的傅里叶级数 函数在 上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握,,,及 的麦克劳林(maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(euler)方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程: .5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题. 线 性 代 数一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求:1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间及其相关概念 维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质考试要求1.理解 维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解 维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克莱姆(cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法. 概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(poisson)分布 及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件. 3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(chebyshev)不等式 切比雪夫大数定律 伯努利(bernoulli)大数定律 辛钦(khinchine)大数定律 棣莫弗-拉普拉斯(de moivre-laplace)定理 列维-林德伯格(levy-lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解 分布、 分布和 分布的概念及性质,了解上侧 分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验. lz满意么?满意请采纳,谢谢
推荐阅读
- 普通话考试成绩查询系统,普通话证能不能在网上查到怎么查
- 公务员试题下载,求历年来国家公务员考试真题打包直接下载
- 主治医师试题,2019年主治医师考试密卷一小时背熟就能过是真的吗
- 湖南会计从业资格考试报名,2017年湖南会计从业资格考试报名时间什么时候
- 护师成绩查询入口2020,执业医师考试成绩查询进入国家医学考试网点击成绩查询后出现下
- 研究生考试准考证打印,考研准考证怎么打印
- 中招考试查分河南2021,河南中考查分的电话是几
- 全国会计考试网官网,全国会计考试资格官网的用户名是什么
- 秦皇岛考试院,秦皇岛市教育考试院介绍
- 2019年安徽省公务员考试公告,2015年安徽省公务员考试公告什么时候出