以NMOS为例,原理都是Gate关闭状态,Source/Bulk的PN结本来是短接0偏的,当I/O端有大电压时,则Drain/Bulk PN结雪崩击穿,瞬间bulk有大电流与衬底电阻形成压差导致Bulk/Source的PN正偏,所以这个MOS的寄生横向NPN管进入放大区(发射结正偏,集电结反偏),所以呈现Snap-Back特性,起到保护作用 。PMOS同理推导 。
这个原理看起来简单,但是设计的精髓(know-how)是什么?怎么触发BJT?怎么维持Snap-back?怎么撑到HBM>2KV or 4KV?
如何触发?必须有足够大的衬底电流,所以后来发展到了现在普遍采用的多指交叉并联结构(multi-finger) 。但是这种结构主要技术问题是基区宽度增加,放大系数减小,所以Snap-back不容易开启 。而且随着finger数量增多,会导致每个finger之间的均匀开启变得很困难,这也是ESD设计的瓶颈所在 。
如果要改变这种问题,大概有两种做法(因为triger的是电压,改善电压要么是电阻要么是电流):1、利用SAB(SAlicide-Block)在I/O的Drain上形成一个高阻的non-Silicide区域,使得漏极方块电阻增大,而使得ESD电流分布更均匀,从而提高泄放能力;2、增加一道P-ESD (Inner-Pickup imp,类似上面的接触孔P+ ESD imp),在N+Drain下面打一个P+,降低Drain的雪崩击穿电压,更早有比较多的雪崩击穿电流 。
对于Snap-back的ESD有两个小小的常识要跟大家分享一下:
1)、NMOS我们通常都能看到比较好的Snap-back特性,但是实际上PMOS很难有snap-back特性,而且PMOS耐ESD的特性普遍比NMOS好,这个道理同HCI效应,主要是因为NMOS击穿时候产生的是电子,迁移率很大,所以Isub很大容易使得Bulk/Source正向导通,但是PMOS就难咯 。
2) 、Trigger电压/Hold电压: Trigger电压当然就是之前将的snap-back的第一个拐点(Knee-point),寄生BJT的击穿电压,而且要介于BVCEO与BVCBO之间 。而Hold电压就是要维持Snap-back持续ON,但是又不能进入栅锁(Latch-up)状态,否则就进入二次击穿(热击穿)而损坏了 。还有个概念就是二次击穿电流,就是进入Latch-up之后I^2*R热量骤增导致硅融化了,而这个就是要限流,可以通过控制W/L,或者增加一个限流高阻,最简单最常用的方法是拉大Drain的距离/拉大SAB的距离(ESD rule的普遍做法) 。
3、栅极耦合(Gate-Couple) ESD技术
————————-
我们刚刚讲过,Multi-finger的ESD设计的瓶颈是开启的均匀性,假设有10只finger,而在ESD 放电发生时,这10 支finger 并不一定会同时导通(一般是因Breakdown 而导通),常见到只有2-3 支finger会先导通,这是因布局上无法使每finger的相对位置及拉线方向完全相同所致,这2~3 支finger 一导通,ESD电流便集中流向这2~3支的finger,而其它的finger 仍是保持关闭的,所以其ESD 防护能力等效于只有2~3 支finger的防护能力,而非10 支finger 的防护能力 。
这也就是为何组件尺寸已经做得很大,但ESD 防护能力并未如预期般地上升的主要原因,增打面积未能预期带来ESD增强,怎么办?其实很简单,就是要降低Vt1(Trigger电压),我们通过栅极增加电压的方式,让衬底先开启代替击穿而提前导通产生衬底电流,这时候就能够让其他finger也一起开启进入导通状态,让每个finger都来承受ESD电流,真正发挥大面积的ESD作用 。
但是这种GCNMOS的ESD设计有个缺点是沟道开启了产生了电流容易造成栅氧击穿,所以他不见的是一种很好的ESD设计方案,而且有源区越小则栅压的影响越大,而有源区越大则snap-back越难开启,所以很难把握 。
推荐阅读
- 黄冰糖太大怎么弄碎
- 微信怎么隐藏好友加密 微信怎么隐藏好友而不删除
- 如何设置定时开关机 怎么设置定时开关机
- 厨房瓷砖顽固污渍怎么清理 厨房瓷砖又油又粘自制清洗剂清除污渍
- 怎么炒鸡脯肉嫩
- 锅烧糊了上面黑的怎么去掉
- 怎么炒辣椒不黑
- 怎么炒黄瓜和鸡蛋
- 乐视为什么突然倒闭了 那么乐视电视怎么样呢
- 夏普电视怎么样好不好 有哪些电视型号区别