参数方程中t的几何意义要看具体的曲线方程了,一般都是长度,角度等几何量,也有一些是不容易找到对应的几何量的 。
比如:
对于直线:x=x0+tcosa,y=y0+tsina,参数t是直线上P(x,y)到定点(x0,y0)的距离 。
对于圆:x=x0+rcost,y=y0+rsint,参数t是圆上P(x,y)点水平方向的圆心角 。
拓展资料参数方程和函数很相似:它们都是由一些在指定的集的数 , 称为参数或自变量,以决定因变量的结果 。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等 。
【参数方程中t的几何意义】一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:
并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程 , 联系变数x、y的变数t叫做参变数,简称参数 。相对而言,直接给出点坐标间关系的方程叫普通方程 。
推荐阅读
- 住窑洞的主要是什么民族
- 轩在女孩名字中的意思
- 中国哪里产日用陶瓷
- 与其锦上添花不如雪中送炭的意思 与其锦上添花不如雪中送炭的含义
- 7月份应季水果蔬菜?
- 中暑了吃什么菜好?
- 原神千风神殿下面能进去吗
- 社保中心周六上班吗
- 我想知道如何查询信用卡中的额度
- 中国经历了多少个朝代