泰勒公式的推导过程为:若函数f(x)在包含x0的某个开区间(a,b)上具有(n+1)阶的导数,那么对于任一x∈(a,b),有f(x)=f(x0)/0!+f'(x0)/1!+f'(x0)/2!+...+f(n)'(x0)/n!+Rn(x) 。
【泰勒公式的推导过程 泰勒公式是怎样推导的】
其中,Rn(x)=f(n+1)δ(x-x0)^(n+1)/(n+1)!,此处的δ为x0与x之间的某个值 。f(x)称为n阶泰勒公式,其中,P(x)=f(x0)+f'(x0)(x-x0)+...+f(n)(x0)(x-x0)^n/n!称为n次泰勒多项式 。
x0由导数的定义可知,当函数f(x)在点x0处可导时,在点x0的邻域U(x0)内恒有f(x)=f(x0)+f'(x0)(x-x0)+o(x-x0) 。因为o(x-x0)是一个无穷小量,故有f(x)≈f(x0)+f'(x0)(x-x0) 。
从几何上看,它是用切线近似代替曲线 。然而,这样的近似是比较粗糙的,而且只在点的附近才有近似意义 。为了改善上述不足,使得近似替代更加精密,数学家们在柯西中值定理的基础上,推导出了泰勒中值定理(泰勒公式) 。
推荐阅读
- 意态造句 意态的造句
- 带有昆虫的四字成语 带有昆虫的四字成语有哪些
- 老么造句 老么的造句
- 老远造句 老远的造句
- 连续型随机变量的概率密度函数一定连续吗 连续型随机变量的概率密度函数一定是连续的吗
- 一起的意思是什么 一起的含义解释是什么
- 不老造句 不老的造句
- 点的集合 点的集合教案
- 开诊所的条件 快来看看吧
- 怎样把手机里的照片传到电脑里 学会这些不再担心