本文目录一览
- 1,高中数学必修一知识点归纳有哪些
- 2,高中必修一数学知识点总结
2,高中必修一数学知识点总结 高中必修一数学知识点总结高一数学必修一的学习,需要大家对知识点进行总结,这样大家最大效率地提高自己的学习成绩 。下面高中必修一数学知识点总结是我为大家整理的,在这里跟大家分享一下 。高中必修一数学知识点总结第一章 集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合(3)元素的无序性: 如:3.集合的表示:(1)用拉丁字母表示集合:A=(2)集合的表示方法:列举法与描述法 。注意:常用数集及其记法:X Kb 1.C om非负整数集(即自然数集) 记作:N正整数集 :N*或 N+整数集: Z有理数集: Q实数集: R1)列举法:2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合3) 语言描述法:例:4) Venn图:4、集合的分类:(1)有限集 含有有限个元素的集合(2)无限集 含有无限个元素的集合(3)空集 不含任何元素的集合例:二、集合间的基本关系1.“包含”关系—子集注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合 。反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A=即:① 任何一个集合是它本身的子集 。A?A② 真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)③ 如果 A?B, B?C ,那么 A?C④ 如果A?B 同时 B?A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集 。4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三、集合的运算运算类型 交 集 并 集 补 集定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作A交B),即A B=由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作A并B),即A B =设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作,即CSA=A A=AA Φ=ΦA B=B AA B AA B BA A=AA Φ=AA B=B AA B AA B B(CuA) (CuB)= Cu (A B)(CuA) (CuB)= Cu(A B)A (CuA)=UA (CuA)= Φ.二、函数的有关概念1.函数的概念设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域 。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2.值域 : 先考虑其定义域(1)观察法 (2)配方法 (3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法1.描点法: 2.图象变换法:常用变换方法有三种:1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射 。记作“f(对应关系):A(原象) B(象)”对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象 。6.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数 。(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数 。二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:(1)任取x1,x2∈D,且x1(2)作差f(x1)-f(x2);或者做商(3)变形(通常是因式分解和配方);(4)定号(即判断差f(x1)-f(x2)的正负);(5)下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.9.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .10、函数的解析表达式(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的.主要方法有:1.凑配法2.待定系数法3.换元法4.消参法11.函数最大(小)值○1 利用二次函数的性质(配方法)求函数的最大(小)值○2 利用图象求函数的最大(小)值○3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);第三章 基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么 叫做 的 次方根,其中 >1,且 ∈ *.负数没有偶次方根;0的任何次方根都是0,记作。当 是奇数时,,当 是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:,0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1) ? ;(2) ;(3) .(二)指数函数及其性质1、指数函数的概念:一般地,函数 叫做指数函数,其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a>1 0定义域 R 定义域 R值域y>0 值域y>0在R上单调递增 在R上单调递减非奇非偶函数 非奇非偶函数函数图象都过定点(0,1) 函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是 或 ;(2)若,则 ; 取遍所有正数当且仅当 ;(3)对于指数函数,总有 ;二、对数函数(一)对数1.对数的概念:一般地,如果,那么数 叫做以 为底 的对数,记作: ( — 底数,— 真数,— 对数式)说明:○1 注意底数的限制,且 ;○2 ;○3 注意对数的书写格式.两个重要对数:○1 常用对数:以10为底的对数 ;○2 自然对数:以无理数 为底的对数的对数 .指数式与对数式的互化幂值 真数= N = b底数指数 对数(二)对数的运算性质如果,且,,,那么:○1 ? + ;○2 - ;○3 .注意:换底公式: (,且 ;,且 ; ).利用换底公式推导下面的结论:(1) ;(2) .(3)、重要的公式 ①、负数与零没有对数; ②、,③、对数恒等式(二)对数函数1、对数函数的概念:函数,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别 。如:,都不是对数函数,而只能称其为对数型函数.○2 对数函数对底数的限制:,且 .2、对数函数的性质:a>1 0定义域x>0 定义域x>0值域为R 值域为R在R上递增 在R上递减函数图象都过定点(1,0) 函数图象都过定点(1,0)(三)幂函数1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.第四章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数,把使 成立的实数 叫做函数 的零点 。2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标 。即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点.3、函数零点的求法:○1 (代数法)求方程 的实数根;○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数 .(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.(2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.5.函数的模型;
推荐阅读
- 才能数学,怎样才能学会数学
- 2012英语二真题答案,红对勾英语必修五答案
- esl课程,美国高中ESL课学什么
- 考籍号,山东省普通高中学业水平考试网上报名不知道考籍号怎麽办
- 考研数学真题,考研数学真题买哪个好
- 苹果11有多少个颜色,小学毕业班数学应用题
- 伊通一中,新郑龙湖一中规划的有高中吗
- 高中毕业证书编号怎么查,高中学历证书可以在学历网上查到吗怎么查
- 2021数学高考全国二卷,高考的全国二卷的数学和理综有多少人认为难
- 海沧教育局,厦门海沧有什么高中