一个方程有增根是什么意思 增根是什么意思( 十 )


6.等腰三角形的腰长为2cm,面积为1 cm2,则顶角的度数为
7.已知一山坡的坡度为1:3,某人沿斜坡向上走了100m,则这个人升高了 m
8.一锥形零件的大头直径为20cm,小头直径为5cm,水平距离为35cm,则该锥形零件的锥度为
第28课 锐角三角函数
〖考查重点与常见题型〗
1. 求三角函数值,常以填空题或选择题形式出现,如:
在Rt△ABC中,∠C=90°,3a=b,则∠A= ,sinA=
2. 考查互余或同角三角函数间关系,常以填空题或选择题形式出现,如:
(1) sin53°
cos37°+cos53°
sin37°=
(2) 在Rt△ABC中,∠C=90°,下列各式中正确的是( )
(A) sinA=sinB (B)sinA=cosB (C)tanA=tanB (D)c0tA=cotB
3. 求特殊角三角函数值的混合运算,常以中档解答题或填空题出现,如:
1-2sin30°cos30°=
第29课 圆的有关性质
〖大纲要求〗
1. 正确理解和应用圆的点集定义,掌握点和圆的位置关系;
2. 熟练地掌握确定一个圆的条件:即圆心、半径;直径;不在同一直线上三点 。一个圆的圆心只确定
圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一;
3. 熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半径的2倍;
直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系;
4. 掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径;
5. 掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关问题;
6. 注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦”③“平分这另一条
弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;
(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;
(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质 。
〖考查重点与常见题型〗
1. 判断基本概念、基本定理等的正误,在中考题中常以选择题、填空题的形式考查学生对基本概念和基本定理的正确理解,如:下列语句中,正确的有( )
(A)相等的圆心角所对的弧相等 (B)平分弦的直径垂直于弦 (C)长度相等的两条弧是等弧 (D)弦过圆心的每一条直线都是圆的对称轴
2. 论证线段相等、三角形相似、角相等、弧相等及线段的倍分等 。此种结论的证明重点考查了全等三角形和相似三角形判定,垂径定理及其推论、圆周角、圆心角的性质及切线的性质,弦切角等有关圆的基础知识,常以解答题形式出现 。
第30课 直线和圆的位置关系

推荐阅读