有理数的定义:有理数是整数和分数的统称,是整数和分数的集合 。无理数的定义:无理数是无限不循环小数,是所有非有理数的实数 。无理数是指实数范围内不能表示成两个整数之比的数,比如圆周率 。
有理数和无理数的区别有理数和无理数都写成小数形式时,有理数能写成有限小数 。所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比 。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等 。无理数的另一特征是无限的连分数表达式 。无理数最早由毕达哥拉斯学派弟子希伯索斯发现 。
有理数集是整数集的扩张 。在有理数集,加法、减法、乘法、除法(除数不为零)4种运算通行无阻 。无理数是指实数范围不能表示成两个整数之比的数 。简单的说,无理数就是10进制下的无限不循环小数 。
有理数的名字由来“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理” 。事实上,这似乎是一个翻译上的失误 。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的” 。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数” 。
但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同) 。所以这个词的意义也很显豁,就是整数的“比” 。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理 。
无理数的由来毕达哥拉斯(Pythagoras,约公元前580年至公元前500年间)是古希腊的大数学家 。他证明许多重要的定理,包括后来以他的名字命名的毕达哥拉斯定理(勾股定理),即直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积 。毕达哥拉斯将数学知识运用得纯熟之后,觉得不能只满足于用来算题解题,于是他试着从数学领域扩大到哲学,用数的观点去解释一下世界 。
经过一番刻苦实践,他提出“万物皆为数”的观点:数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序 。
公元前500年,毕达哥拉斯学派的弟子希伯索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的“万物皆为数”(指有理数)的哲理大相径庭 。
这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒 。被毕氏门徒残忍地投入了水中杀害 。科学史就这样拉开了序幕,却是一场悲剧 。
希伯索斯的发现,第一次向人们揭示了有理数系的缺陷,证明了它不能同连续的无限直线等同看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙” 。而这种“孔隙”经后人证明简直多得“不可胜数” 。
于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了 。不可公度量的发现连同芝诺悖论一同被称为数学史上的第一次数学危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学和逻辑学的发展,并且孕育了微积分思想萌芽 。
推荐阅读
- 玉兰的寓意和象征是什么
- 坚果pro3和一加7T区别
- 小米5C和360N5哪个比较值得买?
- 路由器中的管理间距和量度参数
- 坚果pro3和魅族16spro区别
- 小米5C和OPPOA57哪个好?OPPOA57和小米5C区别对比评测
- 红米4X有几个版本?红米4X标准版和高配版区别对比
- 山药黑斑病防治技术
- 气保焊和二保焊有什么区别
- 小米5C和360N5哪个好?360N5和小米5C区别对比评测