世界上最难的数学题

对人类既有着无穷的吸引力,又总是令人类百思不解,折磨着人类的求知欲和好奇心,挑战着人类的智慧 。那么今天就为你介绍,那些世界上最难的数学题 。

世界上最难的数学题


操作方法01、NP完全问题
在一个周六的晚上,你参加了一个盛大的晚会 。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人 。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝 。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的 。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人 。生成问题的一个解通常比验证一个给定的解时间花费要多得多 。这是这种一般现象的一个例子 。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因式分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的 。人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题 。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想 。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一 。它是斯蒂文房伎擞?971年陈述的 。
02、纳维叶-斯托克斯方程
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行 。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言 。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少 。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘 。
03、霍奇猜想
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法 。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成 。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展 。不幸的是,在这一推广中,程序的几何出发点变得模糊起来 。在某种意义下,必须加上某些没有任何几何解释的部件 。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合 。
04、杨-米尔斯理论
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的 。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系 。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波 。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解 。特别是,被大多数物理学家所确认、并且在他们的对于"夸克"的不可见性的解释中应用的"质量缺口"假设,从来没有得到一个数学上令人满意的证实 。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念 。

推荐阅读