世界上最难的数学题( 二 )


05、BSD猜想
数学家总是被诸如x^2 y^2=z^2那样的代数方程的所有整数解的刻画问题着迷 。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难 。事实上,正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解 。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态 。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点 。
06、黎曼假设
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等 。这样的数称为素数;它们在纯数学及其应用中都起着重要作用 。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s)的性态 。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上 。这点已经对于开始的1,500,000,000个解验证过 。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明 。
特别提示【世界上最难的数学题】

推荐阅读