韦达定理推广是一元二次方程中根和系数之间的关系 。法国数学家弗朗索瓦·韦达在著作《论方程的识别与订正》中建立了方程根与系数的关系 , 提出了这条定理 。由于韦达最早发现代数方程的根与系数之间有这种关系 , 人们把这个关系称为韦达定理 。
发展:
法国数学家弗朗索瓦·韦达在著作《论方程的识别与订正》中改进了三、四次方程的解法 , 还对n=2、3的情形 , 建立了方程根与系数之间的关系 , 现代称之为韦达定理 。
韦达最早发现代数方程的根与系数之间有这种关系 , 因此 , 人们把这个关系称为韦达定理 。韦达在16世纪就得出这个定理 , 证明这个定理要依靠代数基本定理 , 而代数基本定理却是在1799年才由高斯作出第一个实质性的论性 。
定理意义:
韦达定理在求根的对称函数 , 讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用 。
一元二次方程的根的判别式为(a , b , c分别为一元二次方程的二次项系数 , 一次项系数和常数项) 。韦达定理与根的判别式的关系更是密不可分 。
根的判别式是判定方程是否有实根的充要条件 , 韦达定理说明了根与系数的关系 。无论方程有无实数根 , 实系数一元二次方程的根与系数之间适合韦达定理 。判别式与韦达定理的结合 , 则更有效地说明与判定一元二次方程根的状况和特征 。
韦达定理最重要的贡献是对代数学的推进 , 它最早系统地引入代数符号 , 推进了方程论的发展 , 用字母代替未知数 , 指出了根与系数之间的关系 。韦达定理为数学中的一元方程的研究奠定了基础 , 对一元方程的应用创造和开拓了广泛的发展空间 。
利用韦达定理可以快速求出两方程根的关系 , 韦达定理应用广泛 , 在初等数学、解析几何、平面几何、方程论中均有体现 。
例如:
【韦达定理推广 韦达定理推广公式】一元二次方程x2﹣4x 2=0的两根为x1 , x2.则x12﹣4x1 2x1x2的值为:
【答案】2 。
【分析】解:∵一元二次方程x2﹣4x 2=0的两根为x1、x2 。
∴x12﹣4x1=﹣2 , x1x2=2 。
∴x12﹣4x1 2x1x2=﹣2 2×2=2 。
推荐阅读
- 什么是重心定理
- 拼多多推广中心怎么用
- 淘宝商品怎么加入淘宝联盟
- 淘宝直通车怎么推广
- 什么是圆的割线定理爱问知识人
- 游戏推广员每天做什么
- 什么是相交弦定理
- 什么是弦长定理
- 什么是燕尾定理
- 拼多多场景推广在哪里