排列组合是组合学最基本的概念 。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序 。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序 。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数 。排列组合与古典概率论关系密切 。
排列组合定义从n个不同元素中,任取m(m≤n,m与n均为自然数)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示 。
排列组合公式A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!
C-Combination 组合数
A-Arrangement 排列数
n-元素的总个数
m-参与选择的元素个数
!-阶乘
排列组合基本计数原理加法原理与分布计数法
1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法 。
2、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn 。
3、分类的要求:每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) 。
乘法原理与分布计数法
1、乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法 。
【高中数学排列组合公式 高中数学排列组合公式知识点】2、合理分步的要求:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 。
推荐阅读
- 高中数学怎么学 高中数学怎么学才能学好
- 高中数学难吗 高中数学最难的是哪部分
- 重点 高中数学知识点总结超详细(高中数学知识点总结)
- 补课一对一价格 高中数学补课一对一价格
- 2020高中课程标准及学分最新版 高中数学课程标准
- 高中数学选修有哪几本 高中数学选修有哪几本书
- 如何学好高中政治 高中政治怎么学
- 高中政治物质与意识的关系及区别 高中政治物质与意识的辩证关系知识点
- 2022高中十大教辅书排行榜 高中教辅书排行榜2019
- 2021高中教辅书十大排行榜 高中教辅书推荐2021