近期, 央视《机智过人》节目中上演了人与机器的“读心”大战 。 结果好像也不太惊人, 没错, 机器又赢了 。
节目中, 名为“阿尔法鹰眼”的机器人快速识破节目嘉宾撒贝宁和韩雪刻意伪装的表情, 准确判断出牛蛙所在的箱子 。 在另一项难度更高的测试中, 它又在一排心理素质顶尖的海豹突击队老兵中准确找出了其中的狙击手, 速度比从业多年的人类心理专家更快 。
据介绍, 阿尔法鹰眼是掌握情感计算能力的人工智能设备, 能识破人的情绪 。 连家人都可能注意不到的情绪变化竟然瞒不过机器, 人类真的要无所遁形了吗?
将人的情感进行分类
情感这个词, 喜乐哀愁种种, 人类自己都很难准确定义, 机器又如何理解?这是看到情感计算四个字最大的疑问 。
对此, 国际关系学院信息科技系副教授李斌阳作出解释:“情感计算的本质是一个分类问题, 让机器判断人的感情是褒义的、贬义的还是中性的 。 鉴于中性的判断在实际应用中范围有限, 因此大部分情感计算尝试做的都是区分褒义和贬义的情绪 。 ”
据他介绍, 情感计算传统的做法是利用人能够提炼出来的表达情感的特征, 学习出一套用于判断感情性质的模型, 在捕捉到新的表情或文本等时进行匹配, 从而做出感情倾向的判断 。
这项研究起于本世纪初, 并在近几年深度学习加入后进步明显——在那之前, 情感特征需要人来提取, 在那之后, 机器可以根据标注好的数据提炼出特征, 更多保留人的原始表达信息 。 当然, 这其中也存在深度学习普遍存在的“黑箱”问题, 研究者并不能确定机器做判断的时候提炼了哪些特征, 且某些特征可能仅针对某一批数据, 从而形成某种偏差 。
据李斌阳介绍, 针对语言文字或图像视频的情感计算基本要“一句一算”或“一帧一算” 。 他以自己从事的文本情感计算为例作了解释:同样是“高”这个字, 在“失业率”和“就业率”两个语境下的情感倾向是不同的, 前者常是贬义, 后者常是褒义, 有时候通过几句话, 机器根本无法分析出背后的含义, 需要更丰富的语义信息的注入 。
微颤动难逃“鹰眼”捕捉
在节目中, 阿尔法鹰眼的表现令人惊艳, 据阿尔法鹰眼安防科技有限公司首席技术官俞楠博士介绍, 这是通过对肌肉的微震颤的捕捉和判断实现的 。 “情绪本身是一个非常复杂的生理反应, 有外在的瑟瑟发抖、浑身颤抖、内在的激素、心跳、血压异常等连锁反应 。 这些反应超出人的控制, 计算机可以通过结构化人的情绪、量化这种反应, 形成对情绪变动引发身体反应的判断模式 。 这是情感计算最简单的部分:利用摄像头捕捉到人身体的微振动, 通过对振动模式的快速检测和分析, 对应到某一种情绪上 。 ”俞楠表示 。
谈到节目中阿尔法鹰眼准确判断出谁摸到牛蛙的部分, 俞楠解释说:“人把手伸到水里, 摸没摸到牛蛙的反应差异是无法伪装的 。 恐惧、紧张会影响肌肉震动, 人无法自控 。 ”通过俞楠的解释, 一方面, 阿尔法鹰眼的工作容易理解, 但另一方面, 这种判断方式和网上流传的“微表情”似无差别, “微表情还是偏重于对图像内容的分析, 需要被测者有较大的表情反应, 如皱眉、咪眼、笑容等‘喜怒形于外’的表现, 同时, 需要比较大面积能显示出人脸正面的图像, 但面对人的面部有遮挡(如带口罩、帽子、墨镜), 或人体的侧面、背后等情况就基本无法判断了 。 而我们的方式是建立起一套微振动情感模式库, 即便人闭上眼没有反应, 一样会有难逃机器法眼的下意识生理反应, 这是系统相对独特的地方 。 ”
推荐阅读
- 日本“飞行汽车” 有望亮相东京奥运会
- 研究:智能空调可能会拖垮电网 导致大面积停电
- 人工翻译是否会被AI取代?
- AI战争会是什么样?英国将启动 "机器人军演"
- 面对求饶的机器人 人类会不会心软?
- 看2018世界机器人大会:哪些机器人已走入生活?
- 谁有会计英语方面的书可以推荐
- 谁有冷餐会菜单啊
- 谁这么厉害算出武则天会做皇帝
- 谁知道关于计算机专业方面的细分