反函数的定义域怎么求

【反函数的定义域怎么求】

反函数的定义域怎么求


反函数的定义域用x=f^(-1)(y)求 , 一般地,如果x与y关于某种对应关系f(x)相对应 , y=f(x),则y=f(x)的反函数为x=f-1(y) 。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的) 。注意:上标"?1"指的是函数幂,但不是指数幂 。
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y) 。反函数x=f-1(y)的定义域、值域分别是函数y=f(x)的值域、定义域 。最具有代表性的反函数就是对数函数与指数函数 。

    推荐阅读