
两个定积分相乘∫(1/y)dx=-1/(∫ydx) , 定积分就是求函数f(X)在区间[a,b]中图线下包围的面积 。即由y=0,x=a,x=b,y=f(X)所围成图形的面积 。这个图形称为曲边梯形 , 特例是曲边三角形 。
【两个定积分相乘怎么算】如果函数f(x)在区间[a,b]上连续,用分点xi将区间[a,b]分为n个小区间,在每个小区间[xi-1,xi]上任取一点ri(i=1,2 , 3,n),作和式f(r1)+...+f(rn),当n趋于无穷大时 , 上述和式无限趋近于某个常数A,这个常数叫做y=f(x),在区间上的定积分,记作/abf(x)dx即/abf(x)dx=limn>00[f(r1)+...+f(rn)],这里,a与b叫做积分下限与积分上限,区间[a , b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式 。
推荐阅读
- 两个分数相乘怎么算
- 未成年工的法定年龄是多少岁
- 海上慢车旗是哪两个旗组合一起的
- 锚定效应思维固定在某处心理学名词
- 中考统招和定向是同时进行吗
- 无偿献血补贴标准
- 冰激淋乳化稳定剂起什么作用
- 隔代探望权是怎么规定的
- 摩尔定律是否永远生效为什么
- 海南省定安县怎么样