圆的周长公式,直径乘以3.14等于圆的面积吗 。发迹号带你了解更多相关信息 。圆是古人最早认知的几何图形之一,他们使用绳子在丈量土地时,发现只要一个人拿着绳子一端原地不动,一人拉着绳子另一端移动,就会画出一个圆形 。因而意识到圆有两个核心要素:圆心和半径
圆的周长公式,直径乘以3.14等于圆的面积吗 。发迹号带你了解更多相关信息 。
圆是古人最早认知的几何图形之一,他们使用绳子在丈量土地时,发现只要一个人拿着绳子一端原地不动,一人拉着绳子另一端移动,就会画出一个圆形 。因而意识到圆有两个核心要素:圆心和半径 。
圆的定义:在同一平面内到一个定点(O)的距离(R)点的集合叫做圆,这个定点叫做圆的圆心(O) 。
需要注意的是,我们通常说的圆是指圆周,就是到圆心距离相等的点的集合,并不包含圆心 。这些点组成了圆形 。在一些几何题中的圆也不会给出圆心,如:一个三角形的外接圆或内切圆,但只要给出了圆,就可以很容易获得圆心 。
圆的半径:
连接圆上任意一点和圆心的线段叫做半径(AO),一般用r(radius)表示 。
圆的直径:
初中教科书上说,连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径 。其实我们可以这样理解,一条经过圆心的直线与圆相交两点,连接这两点的线段叫做直径(AB),一般用字母d(diameter)表示 。由于圆心O到点A和点B的线段均等于半径,所以直径的长度是2倍的半径长度,即d=2r 。
圆的周长:
古代数学家将大小不同的圆环沿着直尺滚动一周后发现,圆的周长总是以圆的直径乘以某个常数,这个常数就是我们现在熟知的圆周率(π) 。然而当时的人们却发现π不是一个整数,似乎无论如何都无法得到π的准确值,这个困扰了人们上千年之久,直到1761年德国数学家约翰·海因里希·兰伯特使用连分数法证明了π是无理数(无限不循环小数) 。在1844年法国数学家刘维尔证明了超越数的存在性之后的1882年,德国数学家林德曼证明了圆周率是超越数 。圆周率π的神秘面纱才被真正揭开了 。
既然圆的周长是某个常数乘以直径,我们就先获得了圆的周长的公式:
C=πd 或 C=2πr 。
周长用字母C(circumference)表示
圆周率π的计算:
现在很多人都理所当然认为π是常数,但并没有想过π为什么是常数?如果π不是常数,且是无限不循环小数,那么我们禅精竭虑计算出π的值将没有任何意义 。
首先,证明π是常数的过程:(没学过“相似三角形”可以直接看结论)
作两个以O点为圆心,半径为R1和R2的同心圆 。再分别作两个圆的内接正n边形( n= 10),且保证正两个正多边形过圆心的对角线重合 。两个正多边形的边长分别为K1和K2 。
我们通过:
从而我们获得结论:
圆的周长(πd 或2πr)只跟半径相关,则π为常数 。
【直径乘以3.14等于圆的面积吗 圆的周长公式】π的计算:
与证明π为常数的方法一样,人们在计算π的值同样使用圆内接正n边形,n越大,正n边形的周长越接近圆的周长,从而计算出更加精确的π值 。这就是“割圆法” 。
推荐阅读
- 6×7的被罩是多少厘米乘以多少厘米 被罩220乘230是几乘几
- 水管一寸是多少厘米管径 1寸管直径是多少
- 6寸盘子直径多少厘米
- 一览8寸蛋糕尺寸对比 8寸是多少厘米蛋糕直径
- 10寸和12寸蛋糕图对比 12寸蛋糕直径是多少厘米
- 8寸蛋糕一般几个人吃 8寸是多少厘米直径
- 月球直径
- word直径符号怎么打出来 直径符号怎么打出来
- 油烟机排烟管的直径是多少
- 2寸半的管子直径是多少